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Spectral Mixture Analysis of Multispectral
Thermal Infrared Images

Alan R. Gillespie

Department of Geological Sciences, University of Washington, Seattle

Remote spectral measurements of light reflected
or emitted from terrestrial scenes is commonly
integrated over areas sufficiently large that the
surface comprises more than one component. Tech-
niques have been developed to analyze multispec-
tral or imaging spectrometer data in terms of a
wide range of mixtures of a limited number of
components. Spectral mixture analysis has been
used primarily for visible and near-infrared im-
ages, but it may also be applied to thermal infrared
data. Two approaches are reviewed: binary mixing
and a more general treatment for isothermal mix-
tures of a greater number of components.

INTRODUCTION

Multispectral thermal infrared images may be
modeled as mixtures of a few spectral endmem-
bers, each corresponding to a significant scene
component. Spectral mixture analysis produces
images of component temperatures, and images
depicting the fractions of the endmember spectra
needed to replicate the image. These fractions
may be related to proportions of endmember ma-
terials in the scene itself through calibration to
measurements made in field.

For visible and near-infrared (VNIR) images
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of reflected sunlight, the systematics of spectral
mixture analysis have been elaborated [see Gilles-
pie et al. (1990a) and references therein]. How-
ever, the thermal infrared (TIR) spectrum has
received less attention, and mixture analysis for
terrestrial targets appears to have been used only
by Dozier (1981), who treated theoretically the
special case in which two anisothermal endmem-
bers of known emissivities mix to comprise the
scene, and Gillespie et al. (1990b,¢), who consid-
ered a more general case for linear analysis and
isothermal scene elements.

Fundamental Assumptions

In conventional analyses, the scene is ordinarily
taken to consist of pixel-sized elements of identi-
fiable composition, and a meaningful emissivity
spectrum is assumed to exist for each pixel. The
scene elements may contain any of a vast array of
constituents. If they contain multiple compo-
nents, then a unique mixed spectrum is assumed
to exist for each pixel. If these assumptions are
correct, important components may be identified
from discrete features in each spectrum.

In spectral mixture analysis, the scene is taken
to consist of only a few spectrally unique compo-
nents (endmembers), the number and identity of
which depend upon the nature of the scene, but
also the spatial scale, spectral resolution, and
number of bands in the image (Adams et al., 1989;
1992).
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\THEMATICAL FRAMEWORK

he above assumptions are valid, a set of compo-
at fractions and one or more temperatures may
deduced for each pixel. The spectrum mea-
red for each pixel may be estimated from the
actra of the components, their temperatures
1id abundances. Information about unusual or
~mmodeled components is concentrated in “resid-
ual” images of the measured minus the estimated
radiance. To date, only the simplified mixing mod-
els discussed below have been tested on terres-
trial scenes.

Binary Mixing

In analyzing two-channel thermal images, it has
been assumed that the scene consists of only two
components, of different temperatures but known
or identical emissivities. These conditions are met
for several classes of remote-sensing problems,
but analysis of most geological targets is infeasible
because the lithologies, and hence the emissivi-
ties, are unknown and different. Dozier (1981)
considered mixing for two scene components, and
developed an algorithm to estimate the tempera-
ture and areal proportion of subpixel targets, us-
ing two-channel TIR data such as collected by
TIROS-N (~4 um and ~11 um). He considered
the problem with and without corrections for
atmospheric attenuation. In the first instance, the
radiance R measured by the sensor may be de-
scribed as

Ri=feB(T)+ (1 -NHeB(Ty), i=1,2, (1)

where T is temperature (Kelvin), ¢ is the emissiv-
ity, f is the mixing fraction, and subscripts ¢, b,
and i refer to the target, background, and image
channel, respectively. B; is the blackbody radiance
defined by the Planck equation, integrated over
the image channel i. T}, the apparent temperature
for the pixel, must be deduced by inverting R; =
&B(T), where ¢; is the average emissivity for the
pixel.

For Eq. (1) there are two measurements;
hence two unknowns may be determined. How-
ever, five variables are unknown: T, T}, €, &, and
f. three of which must be assumed or found from
other data or additional equations. Dozier as-
sumed that the emissivities for target and back-

ground were the same and known (it is sufficient
that they be known), leaving one variable unac-
counted for. He considered two cases: (1) T, was
known; and (2) T: and T, were constant over
multipixel image regions.

For the first case, T, was known a priori, or
found by inspection of pixels in the image for
which f=0. The pair of simultaneous nonlinear
equations (1) may be solved graphically or numer-
ically. The second case was handled by inspecting
two pixels having unchanged T, and T;, but
different f’s. Rearranging Eq. (1) gives

fi=[B(T:y) - B{T)]/ [R(T,) = R(T»)],
i=1.2, 2)

where j is the pixel address. The denominator is
independent of j, and may be eliminated by ra-
tioing Eq. (2) for the two pixels:

fil fa=[R(T;1) = R(T},)] ! [R(T:2) — R(Ty)],
=12, (3)

Thus, T, can be computed from Eq. (3), and f,
and f, from Eq. (1). A similar expression can be
written for (1 —f) and T, instead of T;. Smith and
Rao (1972) first noted that the ratios in Eq. (3)
are wavelength-invariant; hence

[Ro(T1.) = R(T)]/ [Ri(Ti) = Ra(T)]
= [Ro(T21) - Ro(T))/ [Re(T22) - BT}, (4)

where T, refers to either T, or T,. Equation (4)
has two roots, and may be solved iteratively. Once
T, and T, are found, they may be used in Eq. (1)
to find f.

For case 2 (constant T; and T}), solution re-
quires three instead of two adjacent pixels with
the same T, and T., but with different mixing
proportions. Analvsis is based on the same ratioing
tactics described above, except that in an interme-
diate step there are two equations—for (1 —f;)/
(1-f2) and for (1-£5)/(1 —f:)—that are them-
selves ratioed to produce an expression similar to
Eq. (4).

Although Dozier considered only finding tem-
peratures and mixing proportions, for a limited
range of situations, a number of important applica-
tions were encompassed. These included finding
temperatures of point sources of heat, snow cover
estimates, and sea-surface temperatures under a
partly cloudy sky.



General Linear Isothermal Mixing

In general, mixing involves more than two end-
members, and more than two bands are required
for analysis. Three assumptions must be made in
analyzing these multiband TIR images in terms
of general mixtures: (1) mixing is additive; (2)
scene components in each pixel are isothermal;
and (3) radiance R(A,T)=f{A)g(T) + ¢, where 4 is
wavelength, T is temperature, f and g are func-
tions, and ¢ is a constant. (Planck’s law, which
defines radiance accurately, is not separable in
terms of A and 7)) The significance of the third
assumption is that, for wavelengths A; and A; and
coefficients a and f, R;,= aR;, + B, such that shape
or “color” of the radiance spectrum is independent
of temperature.

The first assumption is reasonable for silicate
and carbonate minerals, because the TIR mean
optical path length is smaller than most grains.
The second assumption is unrealistic but neces-
sary to keep the number of unknowns as small as
the number of measurements. The third is met if
the maximum deviation of the line R;,=aR;, +
from the locus of actual radiances is smaller than
the random deviations from the locus predicted
by the NEAT. For NASA’s TIMS scanner (Pallu-
coni and Meeks, 1985), with a NEAT of >0.1° K,
the third assumption is valid for a temperature
range of 300° K to > 325° K; for the future ASTER
scanner to be flown on EOS, with a NEAT of 0.3°
K, the assumption is valid for a range of 45° K.

Gillespie et al. (1990b,c) considered spectral
mixture analysis, for an arbitrary number of image
channels. Mixing was assumed to be linear, by
areal proportion only, and endmember materials
were required to be isothermal. The goal of analy-
sis was to estimate proportions of endmembers,
not to calculate accurate temperatures.

If the isothermal endmember materials can
have different temperatures, the radiance from a
scene element is

Ri=Y fiesB(Ty+r. and 3 fi=1, (5)
kel k=1

where k denotes each of n endmember materials
comprising the scene and 7 is the residual. Here,
each endmember is a radiance vector & B(T).
Equation (3) differs from the corresponding equa-
ton for reflected light in that the radiance term
is exponentially dependent upon temperature.
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Equation (5) describes a restricted case of
anisothermal mixing; in the general case, which
is more realistic, for each component the temper-
ature may vary spatially. However, the general
case is of limited practical application, because
the number of unknowns greatly exceeds the
number of measurements. Even in Eq. (5) there
are two unknowns for each endmember, 7} and
fi, and measured radiances must be described as
mixtures of < m/2 endmembers, where m is the
number of image channels. Currently available
scanners such as TIMS have only six channe -,
and this level of generality is of little practical
use. Instead, Gillespie (1990b,c) reduced the level
of generality by assuming isothermal pixels (the
isothermal endmember materials within a particu-
lar scene element have the same temperature).
rewriting Eq. (5) as

DN; = g,Bl(T‘J Z ﬁ;ﬁj,{- + 0+ 1; (6)
k=1

where the radiance values R; have been encoded
as image DN (coefhicients g and o;). Here, each
endmember is a DN vector, gB(T)&x + 0. The scal-
ing coeflicients are invariant with pixel address,
but T is not. Measured radiances are mixtures of
<m endmembers, allowing at least one degree of
freedom each for T and r. In practice, n may be
estimated by the number of eigenvalues for the
covariance matrix that exceed the sensor noise
level, or by tentative solutions of Eq. (6) us-
ing successively greater numbers of endmem-
bers until the root-mean-square (rms) residual
([Erf/m]'"?) is near the noise level (typically
<2 DN).

Two further simplifications were then made.
In the first, the endmembers for every pixel were
regarded as having the same arbitrary tempera-
ture T*, chosen to exceed the temperatures en-
countered in the scene. Thus the endmembers
may be regarded as emissivity () vectors, inde-
pendent of T.

In the second simplification, isothermal mix-
tures of the n endmember materials were approxi-
mated as mixtures of the endmember materials
at T* and an additional “virtual” cold endmember,
analogous to the shade endmember in VNIR anal-
vses (e.g., Smith et al., 1990a). The radiance from
the virtual cold endmember is similar to that from
a blackbody at a temperature lower than those
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actually found in the scene, or from a cold surface
having zero emissivity. The fraction f of the virtual
cold endmember accounts for the temperature
information removed from the other, tangible
endmembers by the first simplification. However,
it should be noted that T is logarithmically propor-
tional to the complement of f, which varies lin-
early with radiance. Without the virtual cold
endmember, colder, shaded slopes (for example)
could be incorrectly described as mixtures of vari-
ous rock and soil components, plus transpiring
vegetation and/or snow.

Virtual cold is not found in the image or scene,
but must be estimated from the distribution in
the DN space of the data for a group of pixels
comprising two or three tangible endmember ma-
terials at a range of temperatures. These data lie
on mixing lines that converge towards virtual cold,
although the intersection will not itself be ob-
served and must be calculated.

In the simplified mixing model, Eq. (6) may
be rewritten as

n+l

DN; = gg' Z ﬁﬁjk +0;+ 1 (TJ
k=1

where &;,,1,=0 (null vector) and the blackbody
radiance for the tangible endmembers at T*, com-
mon to all the endmembers, has been incorpo-
rated into the gain term: g/ = gB,(T*). At this point,
¢ and o have yet to be determined, although they
have been estimated from engineering data. The
endmembers in Eq. (7) are emissivity vectors.

Tt is possible at this point to calculate values
of fi for each pixel of the image, given a nominal
set of endmembers and the estimated values of g’
and o. However, the selection of endmembers
from the image data is somewhat arbitrary. Gen-
erally, some approximation of the best set of
endmembers is obtained by inspection of the im-
age (for relatively “pure” pixels) and the cluster
of data in a radiance or DN space (for evidence
of mixing lines or surfaces constrained to pass
through endmembers). Also, for many scenes the
structure or degree of organization in the images
of fi is reduced for inappropriate endmembers;
therefore, some choices can be ruled out by pho-
tointerpretation. However, calculation of f; images
for the image-defined endmembers is not the final
step in mixture analysis.

In an image, “pure” pixels are uncommon, and
most are mixed from the pure endmembers that

might have meaning to the field scientist. Thus
the image-defined endmembers are typically mix-
tures of more basic components, regardless of
how well they are chosen. To make the mixture
analysis meaningful, it is generally necessary to
express the image in terms of these more basic
components, for which emissivity spectra may be
measured in the field or laboratory.

The image-defined endmembers and the ref-
erence laboratory or field emissivity spectra are
related by

8,'&:{1!{(8‘{) Zlﬁgﬁ-—(ﬂir'lgji)'l'pf, (8)
im

where subscript k, as before, refers to the n image
emissivity endmembers, the added subscript, j,
now refers to the library or reference endmem-
bers, and p; is the residual. Equation (8) is used
to select the reference spectra that fit the image
endmembers best (as determined from the size
of the residuals and, later, from images of f), and
to determine improved estimates of g’ and o.

In all, Eq. (8) describes a set of (mn) simulta-
neous equations and (2m + n) unknowns (exclud-
ing p). For TIMS (m =6), provided n 23, Eq. (8)
is overdetermined. For actual data the matrix
tends to be unstable, and the solution is sensitive
to system noise; that is, there is a wide range of
possible solutions for small changes in g or o, or
for small changes in the endmember vectors (e.g.,
Pech et al., 1986). With iterative approximation, it
is possible to reduce the ambiguity of the solution,
even for noisy data (Smith et al., 1990b).

In solving Eq. (8), values of f are first assumed,
and g and o are calculated, for a large number of
subsets of n reference spectra selected from the
library (or g and o are assumed, and values of f
are calculated). Solutions yielding unreasonable
values are discarded, and the mean values of
the calculated variables are assumed for another
round of solution. The process is repeated until
few sets of endmembers are left, and successive
iterations result in little change in values of f;, g,
and o. The set of spectra with the smallest residu-
als (py), fractions (f)) ranging from 0 to 1, and the
most meaningful identities is taken to be the set
of reference endmembers.

Coefficients g’ and o will include time-variable
contributions from atmospheric attenuation and
emittance, respectively. These coefficients may
also vary spatially, with scan angle and in areas of



high topographic relief. It would be prudent to
make model corrections for differential atmo-
spheric effects, but this has not yet been done.

Once the reference endmembers and the cali-
bration coeflicients are known, Eq. (7) may be
solved for the reference endmember fractions f,
using the reference spectra instead of the image
endmembers. Fraction images, together with the
residual images for each band and an overall rms
residual image, are the final products.

Discussion. Any violation of the isothermal
assumption reduces the quantitative significance
of fi. An example of this problem is a 1:1 areal
mixture of transpiring vegetation and sand: during
the day, the vegetation is colder than the land,
the preponderance of radiance comes from the
sand, and the vegetation fraction appears to be
quite low; however, at night the vegetation and
sand may be closer in temperature, and the frac-
tions are similar. The correct proportions are cal-
culated only when the temperatures are the same.
A second common, if less severe, example is pro-
vided by topographic shading at the subpixel
scale.

A critical complication is faced in modeling
TIR data that is unparalleled in earlier mixture
analyses of reflected light: the shape of the black-
body spectrum changes with temperature. How-
ever, the color change is minor for commonly
encountered terrestrial temperature ranges. This
effect may be disregarded, provided that the color
aberration is less than random color errors due
to instrument noise. If this is not the case (e.g., for
active volcanoes with large temperature ranges),
then the linear model must be modified. Ignoring
color changes in the blackbody spectrum with
temperature simplifies the relationship of radi-
ance and temperature by linearizing the wave-
length dependence (but not the exponential de-
pendence of R upon 7).

EXAMPLE: ANALYSIS OF DEATH VALLEY
IMAGE

Spectral mixture analysis is illustrated using a
TIMS image of Death Valley, in semiarid south-
eastern California. Death Valley is complex litho-
logically, and sparsely vegetated. It has been stud-

Spectral Mixture Analysis of Thermal IR Images 141

ied previously using multispectral thermal images
(Kahle and Goetz, 1983; Kahle et al., 1984; Gilles-
pie et al., 1984).

TIMS images with an NEAT of 0.1-0.2° K
are acquired in six bands centered at wavelengths
8.3 um, 8.7 um, 9.1 um, 9.8 um, 10.4 um, and
11.3 pm (Palluconi and Meeks, 1985). The image
of Death Valley was taken near noon, 27 August
1982. The nadir ground pixel size was ~18 m.
The data were nominally calibrated, scan by scan,
using dual on-board blackbody measurements,
and geometrically resampled to rectify scan-angle
foreshortening. Both the above corrections were
done at the Jet Propulsion Laboratory. Differen-
tial atmospheric corrections were not made, al-
though these could be done in the future using
LOWTRAN (e.g., van den Bosch and Alley, 1990)
or coregistered VNIR data (Conel, 1990). Spectral
mixture analysis was done using Washington Im-
age and Spectral Package (WISP), an interactive
system developed and implemented in LISP on

Symbolics computers at the University of Wash-
ington (Shippert et al., 1988).

Fraction images for scene components calcu-
lated for the Death Valley image are shown in
Figure 1. These may be compared to standard
enhanced color versions of the same image shown
in a companion article (Gillespie, 1992, this issue).
Brightness temperatures calculated from the
TIMS data ranged from 319 K to 349 K, with
only small portions of the mountains at lower
temperatures (R. E. Alley, personal communica-
tion, 1989). Five image endmembers were em-
ployed: “virtual cold.” “vegetation,” “quartzite,”
“basalt,” and “dolomite.” The “virtual cold” DN
vector was (—15, -7, —13, -9, —43, 23); the
other endmember vectors had much larger values
ranging between 150 DN and 250 DN. The name,
“virtual cold,” was chosen because temperatures
as low as indicated by the endmember vector do
not actually occur in the image. Together, the five
endmembers accounted for all the image variance
not due to noise, except where there was standing
water. The average rms residual was <1.7 DN.
Calibration to reference emissivity spectra was
done using field spectra taken in Death Valley
(e.g., Kahle et al., 1984). The vegetation and dolo-
mite spectra were sufficiently similar that spatial
patterns in the reference-endmember fraction im-
ages were erratic, and the reference model was
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Figure 1. Fraction images of reference endmembers in TIMS image of Death Valley. North is up; image is ~25 km from
top to bottom. a) “Virtual cold.” Gray levels are related nonlinearly to temperature. Fraction data have been comple-
mented such that light = warm, dark = cool. Numbers are keved to comments in text. b) “Vegetation.” The light pixels in
the lower center and lower right side are bit errors in the acquired data. ¢) “Quartzite.” d) “basalt.” In b-d, high fractions

are light; low fractions are dark.

rerun without dolomite, increasing the average
rms residual to 3.2 DN. The four remaining frac-
tion images are the ones shown in Figure la-d.
Display of the fraction information in image
format is an aid to photointerpretation, and the
discussion below is organized from this perspec-
tive; but it should be recalled that one of the
strengths of spectral mixture analysis is the nu-
merical representation of component abundances.
The fractions in Figure la are related nonlin-
early to temperature, and of the images shown this
one most closely resembles the acquired radiance
data. Important features in the scene are num-
bered in Figure la. The image spans Death Valley
valley itself and includes the adjacent piedmonts
(1, 2) as well as part of the Panamint range (3).

On the valley floor shallow standing water (4),
calcite, halite, and silty sediments dominate. The
eastern piedmont contains volcanic and gneissic
gravels. The Panamints and the western piedmont
are largely dolomite (5) and quartzite (6), with
lesser volumes of shale (7) and volcanic rocks
(8). Vegetation is generally sparse. The moun-
tains support a pinon-juniper woodland above
creosote-bush plains. The valley floor is unvege-
tated.

Figure 2 shows three of the reference end-
member fraction images combined as a color pic-
ture. Because the “virtual cold” fraction image
was not used in Figure 2, most of the terrain
information (related to temperature) is missing,
resulting in the “flat” appearance compared to the
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original radiance images or to Figure la. The
color information refers to composition, not to
temperature. Features referred to in the discus-
sion beloware numbered in Figure 2.

The quartzite fraction image (red component
of Fig. 2) highlights alluvial fans on the Panamint
piedmont that are built by streams that drain the
core of the range (9). These fans appear vellow
or orange in Figure 2 because they contain high
fractions of quartzite and dolomite, which to
TIMS spectrally resembles vegetation. Variable
patterns within the quartzite-rich fans are related
to age differences: The resistant quartzites are
disproportionately represented on surfaces of
older deposits (Gillespie et al., 1984). Adjacent
fans that are dark (10) are on smaller streams that
drain only the range front, which consists largely
of carbonate or volcanic lithologies. Bedrock out-
crops of quartzite are most evident in Figure 2 as
thin yellow streaks along the Panamint range front

(11): here the thin-bedded Eureka Quartzite, in-
terstratiied with carbonates, is repeated by fault-
ing. The “vegetation” fraction (green), which en-
compasses all spectrally flat scene constituents, is
highest on the valley floor, especially at the foot
of the piedmonts (12). Like vegetation, halite
and calcite approximate a graybody spectrum as
viewed by TIMS. Basalt fractions (blue) are high-
est for the volcanics cropping out on the Panamint
range front (13), and for the gneissic gravels of
the eastern piedmont (14).

As noted above, temperature-related informa-
tion was substantially removed from the fraction
images of tangible endmember materials com-
bined in Figure 2. Because the tangible end-
member images appear to be largely independent
of temperature, they probably change little in
appearance with time of day or season. They thus
might form a more stable basis for assessment
of change—for instance, in vegetation or soil
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Figure 2. False-color composite of reference endmember
fraction images (red: quartzite; green: vegetation; blue: ba-
salt). Light tones are high fractions, dark are low. Num-
bers are keyed to comments in text.

cover —than’ the acquired radiance images. How-
ever, confirmation of this claim has not yet been
attempted.

CONCLUSIONS

Most natural scenes are mixed at the pixel scale,
and it is appropriate to analyze them in those
terms. Two approaches have been used: In the
first, the scene was taken to consist of anisother-
mal binary mixtures of materials for which emis-
sivities are known or the same; in the second, the
scene was taken to consist of a larger number of
isothermal endmembers of unknown emissivities.

Both approaches yield quantitative informa-
tion on the proportions of materials and tempera-
tures in a scene, Images of the mixing proportions

produced by spectral mixture analysis can also
be displaved as pictures for photointerpretation.
These fraction images resemble those produced
by decorrelation stretching. However, the fraction
images have the advantage that they are themati-
cally meaningful; that is, they depict proportions
of spectrally distinct scene constituents as defined
by the field scientist, not just radiant fluxes in
a particular spectral band. They should also be
temporally stable, provided that the isothermal
assumption is met; in this they differ from simply
enhanced radiance images, which vary in appear-
ance from day to night, or even from day to day.

NASA Solid Earth Sciences Branch and EOS program provided
funding, Jack Salisbury made several valuable suggestions,
and Ken Watson provided an insightful and helpful review.
Steve Willis at the University of Washington helped with the
image processing. Assistance of the Jet Propulsion Laboratory
is appreciated.
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