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Parsing Shade

ABSTRACT - Spectral Mixture Analysis (SMA) is a standard way of analyzing 
spectral images in terms of fundamental components of the scene. It accounts for 
lighting variations by using a Shade endmember that mixes with the tangible spectral 
endmembers such as green vegetation to produce observed spectral radiances.  In 
forests, Shade comprises shadowing and topographic shading ("hillshade"), unresolved 
shadows cast by the canopy ("treeshade"), and shading plus shadows cast by elements 
of the canopy ("leafshade").  We use a 1-m LiDAR DEM to model treeshade over a low-
relief forested area, and SMA to calculate Shade for an ASTER image of the same 
area taken near the same time of year.  The differences between treeshade and Shade
give remote-sensing estimates of leafshade in a forest dominated by deciduous trees. 
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ASTER Shade 
fraction fsh
from SMA.  

LiDAR shade 
fraction
(treeshade)
S+(1-S)·χ

LiDAR shadow
fraction S

LiDAR shading
fraction
χ(i) = 1-cos(i)

2.6 km

The mixing plane for Sh, GV and NPV is shaded dark gray and shows 
isolines for fsh=0 (no shade), 0.2, 0.4, 0.6, and 0.8; fsh=1 (full shade) 
plots at Sh.  Isolines for NPV (but not GV) are also shown.  Shaded 
GV plots along the GV-Sh line; mixtures of GV and NPV plot along 
the fsh=0 line.  Mixtures with less shade than in endmembers GV 
and NPV (fsh<0) plot beyond the fsh=0 isoline.  

After calibration fsh, GV and NPV endmembers with no shadows plot 
on their respective mixing lines with Sh (GV’ & NPV’). Leafshade is 
unchanged.  Mixing now occurs in the (Sh, GV’, NPV’) triangle 
shaded intermediate gray, and the isolines for fsh may be 
discordant with the ones in the (Sh, GV, NPV) triangle.  All image 
data will now plot within the new triangle (no negative Sh fractions).  

Extrapolation to GV’’ and NPV’’ gives virtual endmember positions 
assuming leafshade is also zero, as might occur looking down-sun.  
GV and NPV may have different albedoes such that vector Sh-GV’’
is shorter than vector Sh-NPV: the difference is a measure of the 
difference in albedo δa.  GV’’’ is the position that GV at zero phase 
angle would have if the albedoes were the same.  

ASTER image, 15 May 2004 (60 km 
across; north is up).  Bare fields are 
light; forests and wetlands are dark.  
Shade Area, GV, and NPV are locations 
used to select endmembers.

Explanation

Numbers indicate cover classes
shown in interpretive map and 
identified by color:

Field
1- red: bare earth and grass 
2 – yellow: crops, shrubs, small trees

Forest
3 – orange: 5-10 m 
4 – green: 10-15 m
5 – light blue: 15-20 m
6 - blue: 20-25 m
7 – dark blue: 25-30 m

Remotely sensed spectral images integrate the effects of lighting up to the pixel scale.  Blending contributions from 
topography, canopies, and leaves and branches.  Hybrid analysis of spectral and LiDAR images can be used to separate 
contributions from shadows at the tree and stand scales from shading and shadowing at sub-tree scales, and spectral 
mixture models can be calibrated so that spectral shade fractions (fsh) correspond to more direct measurements from 
LiDAR.  For a deciduous forest in coastal Maryland, USA, viewed in late morning during early summer, leafshade was 
typically ~0.5±0.1 vs. treeshade of ~0.92±0.08.  Future analysis is necessary to account for topographic shading and 
shadowing, to incorporate a more accurate photometric function χ, and to separate darkening due to albedo a on a pixel-
by-pixel basis.
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Explanation
Cover classes: 

Field
Red - bare earth and grass (0-1 m)
Yellow  - crops, shrubs, small trees (1-5 m)

Forest – broad-leaf (hickory, oak)
orange - 5-10 m
green – 10-15 m
Light blue - 15-20 m
Blue - 20-25 m
Dark blue - 25-30 m

Last-arrival “bare-earth” 1-m LiDAR
shade image (<9 m relief).  Because 
test area is low-relief, hillshade could 
be ignored.

L spectral radiance (Wm-2µm-1sr-1) in image channel i
E L vector for spectral endmember j in image channel i
f fraction of endmember spectrum E needed to model Li

for a specific pixel 
δ unmodeled residual for channel i
m number of spectral endmembers
n number of spectral image channels

Fundamental equations Shade endmember

Forward linear mixing model

Research goal - analyze image shade in a forest in terms of its unresolved 
constituent parts:  treeshade and leafshade Λ, and make an image of Λ.

Li = Σ fj Ei,j + δi ; m < n+1 ;      Σfj = 1 

c0+c1·fsh = S+(1-S)· Λ+(1-(S+(1-S)Λ))·(1-a·χ(i))

Endmember spectra defined 
in ASTER image DN (VNIR channels 1-3: Green, Red, NIR)

Shade (Sh)                                               51,       27,   30
Green Vegetation (GV)                             78,       37,     134
Non-photosynthetic vegetation (NPV)    173,      146,     110

fsh Shade fraction (1 = Shade endmember; 0 = the GV-NPV mixing    
line)

c0,c1 calibration offset and gain factor. Image-defined
endmembers may contain a fraction of shade, but fsh = 0.0
should correspond to zero shade. The Shade endmember
itself is defined as 100% shade. 

S treeshade shadow fraction, integrated to the image scale. 
Shadows unresolved by the LiDAR are included as a component 
of leafshade.

χ integrated reflectance for the sunlit part of the canopy, For
Lambertian surfaces, χ = 1-cos(i), where i is the solar   
incidence angle; for real canopies scattering is not diffuse.  
For uniform reflectance, χ = 1 (this example), independent of i. 

a relative albedo, the change in fsh caused by absorption of
light by the surface (e.g., a leaf) relative to the albedo of 
tangible endmember.  Albedo is a property of composition, not 
structure. 

Λ leafshade shadow fraction, defined shadows cast by unresolv -
ed leaves and branches, integrated to the image scale.  
Leafshade is a property of structure, not composition.  

Schematic mixing diagram for the ASTER 
channel 3 (NIR) vs. channel 2 (R) plane.  Arc is 
locus of a vector rotated about Sh.

USA

Calibration and solution for Λ – We measured total shade fsh from SMA of 15-m 
ASTER data and treeshade S using high-resolution 1-m LiDAR.  Assuming a & Λ are constant 
for similar forest stands, we solved the shade endmember equation for c1 (calibration) and 
fsh, using two or more similar stands with different fsh and S.  co was -0.66; Gain c1 was 2.58.  
Knowing c0, c1, fsh, and S, we can solve for a·Λ for all pixels.   

GV

GV/(1-fsh)

GV/(1-(S-(1-S)·χ))

Normalization of GV

Test area

Interpretive map

LiDAR images

First-arrival LiDAR shade image, at 
full 1-m resolution and complemented 
so that areas of high shade are dark, 
as would be seen in an air photo (2.6 
km across).  North is up.  Image shows 
S+(1-S)·χ·(1-a)·Λ.

1st-arrival 1-m LiDAR shade image 
embedded in 15-m ASTER image.  
For calculation of Λ, LiDAR images 
were smoothed with 15 x 15 low-pass 
box filters, and resampled to 15-m 
resolution.

We extracted LiDAR images of the test 
area from data acquired by the State 
of Maryland’s Department of Natural 
Resources between June and July of 
2003. First-return point-cloud postings 
were <1 m, and vertical resolution was 
14.3 cm.
http://dnrweb.dnr.state.md.us/gis/data/lidar/

S & S·χ images were calculated from 
the 1st-arrival data using ArcInfo
and ERDAS Imagine, respectively.   

Shade fraction images at 
15-m resolutions.  High-
shade areas are light.

ASTER Green Veg.
fraction fGV from SMA

Calculated Λ

Approximated:
fsh/treeshade

Fields showed S≈0 and plants 
were probably not resolved.  fsh
was dominated by a. 

Calibration gain c1 ≈2.58
Assumption that Λ is constant 

for stands within a given 
age/size range is ~valid

Permits calculation of Λ for 
entire image
Λ and S have similar variability. 

Λ =0.77
a≈23%: ASTER spectral library   

http://speclib.jpl.nasa.gov

S is highly variable and responds to structural stage
(1-a)·Λ appears to be less variable than S, and may prove useful in 

community mapping.  
The approximated version of leafshade has higher variance because it 

retains a component of shadow and shading.  It is easier to calculate.
a and Λ are not separable by this approach.  

In SMA, it is common to normalize “tangible” endmember fractions such 
as fGV by (1-fsh). Fsh includes effects due to a as well as Λ.

Normalizing by LiDAR shade images, independent of a and Λ, produces a 
different result that deserves field validation and further exploration.  

Future work will take hillshade into account for rough forested terrain 

Relationship between fsh and 
treeshade:
1) Scattergram of 

individual pixels
2) Four 20x20 pixel-averaged

values for ASTER fsh vs.      
LiDAR S+(1-S)·χ for 15-

20 m stands.
The assumption that Λ is 
constant appears to be valid

Photo of forest in 
eastern Maryland, 
figures for scale.

Air photo of test area

LEAFSHADE


