Using sub-pixel roughness estimates from ASTER stereo images to compensate for roughness effects in the thermal infrared

A. Mushkin^{1*}, A. R. Gillespie¹, M. O'Neal², L. Pietro² I. Danilina¹, E. Abbott³, L. Balick⁴.

¹University of Washington ²University of Delaware ³Jet Propulsion Laboratory, ⁴Los Alamos National Laboratory *mushkin@u.washington.edu

<u>Background</u> – roughness effects on TIR data

 <u>Approach</u> – remote roughness estimates + radiosity model → compensate TIR data for roughness effects

<u>Results</u>

-Remote roughness estimations (ASTER)

- Basis for compensating ASTER TES emissivity retrievals

Summary & conclusions

Background:

Cavity radiation & shadowing

The problem:

• The effects of DEM-scale topography (i.e., at the suprapixel scale) on remote TIR measurements can be compensated using radiosity models.

• However, compensation for sub-pixel roughness effects requires quantification of the topographic expression of the surface at sub-pixel scale, i.e., surface roughness.

Fundamental assumption: Lambertian reflection from the surface

ASTER data:

<u>NASA's Advanced Spaceborne Thermal Emission</u> <u>Radiometer (ASTER):</u>

4 VNIR bands between 0.56-0.81 µm, 15 m resolution

6 SWIR bands between 1.65-2.45 µm, 30 m resolution

5 TIR bands between 8.10-11.5 µm, 90 m resolution

Stereoscopic imaging at ~ 0.807µm (band 3)

 \triangleright viewing at nadir (3N) and 27.6° backwards from nadir (3B)

> 15m spatial resolution

➤ ~65km footprint

> 30-m resolution DEM (standard product)

ASTER stereo roughness:

- ASTER 3B/3N ratio as a proxy for <u>relative</u> surface roughness (*Mushkin & Gillespie, 2005 ;RSE*)
- Independent of albedo/composition, and typical atmospheric conditions (S^{\uparrow} <<L_s)
- Sensitive to illumination geometry

 L_s : radiance at sensor , S^{\uparrow}: atm path radiance

Stereo Roughness calibration:

 problem with extrapolation to different illumination conditions

(Mushkin & Gillespie, in press; GRL)

illumination geometry can be adjusted in model
requires atmospheric corrections

Relative roughness

Model-based roughness calibration:

Different terrains may have different calibration coefficients -

LiDAR library for various terrains - work in progress

ASTER TES compensation for Roughness

* Spectra for "basalt1s" from ASTER spectral Library
* TES corrections include 10% random error in roughness estimation

ASTER TES compensation for Roughness

Before applying real image data:

Atmospheric effects

Incorporate the effects of shadows on cavity radiation

□ Isothermal surfaces are expected to be a 'worst-case' scenario for daytime data because the effect of shadowed cavities is be subdued. Night time data in which cavities are warmer is another story.....

Summary & Future work

Summary -

ASTER stereo data can be used to measure sub-pixel (~15m) roughness
 calibrations are terrain-type specific
 theoretical basis for roughness compensation for ASTER TES emissivity retrievals

<u>Future work –</u>
 LiDAR library for different terrain types (in progress)
 Incorporate solar illumination into TIR radiosity model
 Further application and testing of roughness corrections for ASTER TIR data